Useful Information: Filters --------------------------- BUTTERWORTH FILTER Lowpass 1 atennuation = ------------------- SQR((f/fc)^(2*N)+1) Highpass 1 atennuation = ------------------- SQR((fc/f)^(2*N)+1) where N = order -------------------------------------------------------------------------------- 1st ORDER FILTER Lowpass 1 Re = ---------- (f/fc)^2+1 1 Im = --------- f/fc+fc/f 1 atennuation = --------------- SQR((f/fc)^2+1) phase = arctan(R/Xc) Highpass 1 atennuation = --------------- SQR((fc/f)^2+1) phase = arctan(Xc/R) -------------------------------------------------------------------------------- 2nd ORDER FILTER Lowpass G*w0^2 H(s) = ----------------- s^2+2*d*w0*s+w0^2 Highpass G*s^2 H(s) = ----------------- s^2+2*d*w0*s+w0^2 where G = gain in passband w0 = cutoff (rad/sec) -------------------------------------------------------------------------------- NOISE BANDWIDTH OF BUTTERWORTH FILTER Order Equivalent Noise Bandwidth 1 3dB_BW * PI/2 2 3dB_BW * PI/(2*SQR(2)) 3 3dB_BW * PI/3 high 3dB_BW (approx) -------------------------------------------------------------------------------- CASCADED 1st ORDER FILTERS rel. bandwidth = SQR(2^(1/N)-1) where N = number of stages -------------------------------------------------------------------------------- GAUSSIAN FILTER Gaussian impulse response 1 F(t) = ----------- * exp(-t^2/(4*v)) 2*SQR(PI*v) Gaussian frequency response F(w) = exp(-v*w^2) -------------------------------------------------------------------------------- GAUSSIAN FILTER APPROXIMATION TO RAISED COSINE for impulse response . . x 1 x . . (ideal would be 0 0 0 1 0 0 0) if x = 0.01 F(t) = exp(-0.46*(t/T)^2) F(f) = exp(-0.54*(f*T)^2) -------------------------------------------------------------------------------- GAUSSIAN APPROXIMATION FILTER |H(jw)|^2 = 1 + 2*(w/wc)^2 + (2^2/2!)*(w/wc)^4 + (2^3/3!)*(w/wc)^6 + ... ref. Handbook of Filter Synthesis Anatol Zverev, 1967 -------------------------------------------------------------------------------- 'RIAA' EQUALISATION FILTER C1 C2 ,---||---,---||---, ---| | |------ '--/\/\--'--/\/\--' | R1 R2 / \ R / | R1+R2+R low freq gain ------- R 1 1st break ----- C1*R1 1 R1+R2 lead break ----- * ----- C1+C2 R1*R2 1 2nd break ----- C2*R2 -------------------------------------------------------------------------------- TWIN TEE FILTER R R ,--/\/\----,-/\/\--, --| C | C |-- '---||--,--|--||---' | | / - R/2 \ - 2C / | | | -'--'- 1 notch frequency -------- 2*PI*C*R -------------------------------------------------------------------------------- FILTER DESIGN USING ZVEREV TABLE DATA PI low pass prototype --,--L -,-- | | C C | | w = 2*PI*fc L = R/w * Ln C = 1/w * Cn Table of normalised element values (e.g. Zverev) N C1 L2 C3 L4 . 2 . . . . 3 . . . 4 . . . . . for T sections C1 -> L1, L2 -> C2 etc. normalised values remain the same Highpass: transform C' -> L and L' -> C by L = 1/C' C = 1/L' Bandpass: transform C -> L1&C1 in parallel and L -> C2&L2 in series by C1 = Q*C L1 = 1/C1 L2 = Q*L C2 = 1/L2 where f0 = geometrical centre frequency where B = bandwidth where Q = f0/B -------------------------------------------------------------------------------- SALLEN & KEY FILTER Optimum sensitivity to component changes with regard to stability of Q at Gain = 4/3