Useful Information: Mathematics ------------------------------- TRIGONOMETRIC FORMULAE sin(A)*sin(B) = cos(A-B)/2 - cos(A+B)/2 cos(A)*cos(B) = cos(A-B)/2 + cos(A+B)/2 sin(A)*cos(B) = sin(A-B)/2 + sin(A+B)/2 cos(A)*sin(B) = -sin(A-B)/2 + sin(A+B)/2 sin(A+B) = sin(A)*cos(B) + cos(A)*sin(B) sin(A-B) = sin(A)*cos(B) - cos(A)*sin(B) cos(A+B) = cos(A)*cos(B) - sin(A)*sin(B) cos(A-B) = cos(A)*cos(B) + sin(A)*sin(B) sin(2*A) = 2*sin(A)*cos(A) cos(2*A) = cos^2(A)-sin^2(A) = 1-2*sin^2(A) sinc(x) = sin(PI*x)/(PI*x) -------------------------------------------------------------------------------- NORMAL DISTRIBUTION p(x) = 1/(SQR(2*PI)*sigma) * exp(-(x-u)^2/(2*sigma^2)) where sigma = standard deviation u = mean -------------------------------------------------------------------------------- RAYLEIGH DISTRIBUTION p(x) = (x/sigma^2)*e^(-1/2*(v/sigma)^2) -------------------------------------------------------------------------------- PROBABILITY Probability of exactly n events in N tries (e.g. n errors in N bits) prob = N!/(n!*(N-n)!)*(1-P)^(N-n)*P^n where P = probability of an event -------------------------------------------------------------------------------- BARKER SEQUENCES A sequence of values 1 or -1 aperiodic autocorrelation coefficients are <= 1 for lag other than 0 known sequences exist for length 2, 3, 4, 5, 7, 11, 13 length sequence 2 +- (and ++) 3 ++- 4 ++-+ (and +++-) 5 +++-+ 7 +++--+- 11 +++---+--+- 13 +++++--++-+-+ -------------------------------------------------------------------------------- RECTIFIED SINEWAVE Average value = 2/PI * peak approx. 0.637 2*SQR(2)/PI * rms approx. 0.900