Useful Information: RF ---------------------- SMITH CHART Series C : follow circles anticlockwise Series L : follow circles clockwise Shunt C : reflect point around a vertical line through 1.0, follow circles anticlockwise, reflect back Shunt L : as for Shunt C but rotate clockwise -------------------------------------------------------------------------------- RETURN LOSS & VSWR RL = 20*log(|L|) R-Z0 where L = reflection coefficient = ---- R+Z0 1+10^-(RL/20) VSWR = ------------- 1-10^-(RL/20) -------------------------------------------------------------------------------- TRANSMISSION LINE CHARACTERISTIC IMPEDANCE Z0 = SQR(L/C) where L = inductance per unit length where C = capacitance per unit length TRANSMISSION LINE IMPEDANCE Looking into line open circuited at far end: Zin = Z0/tan(a) where a = electrical length as an angle -------------------------------------------------------------------------------- TRANSMISSION LINE VELOCITY v = 1/SQR(L*C) where v = velocity (metres / sec) where L = inductance per metre where C = capacitance per metre v = c/SQR(er) where c = velocity of light in vacuum where er = (effective) dielectric constant -------------------------------------------------------------------------------- COAXIAL CABLE IMPEDANCE Circular outer: Z0 = 138/SQR(e)*log(D/d) where e = dielectric constant (epsilon r) d = outside dia. of inner D = inside dia. of outer Square outer: Z0 = 138/SQR(e)*log(k*D/d) where k = 1+0.078705*tanh((D/d -1)^0.466)*3.38) D = inside width of square -------------------------------------------------------------------------------- COAXIAL CABLE LOSS a2 = a1 * SQR(f2/f1) where a1, a2 are attenuation (in dB/unit length) at frequencies f1, f2 -------------------------------------------------------------------------------- WILKINSON SPLITTER <--1/4 wave--> -----------+---- -3dB / | 0dB ----< R =2*Zio impedance of quarter wave lines = SQR(2)*Zio \ | -----------+---- -3dB useful bandwidth approx 2:1 -------------------------------------------------------------------------------- PHASE NOISE OF AN OSCILLATOR [ w0^2 ] [ wc ] F*k*T0 phase noise = 0.5 * [ 1 + ---------- ] * [ 1 + -- ] * ------ [ 4*wm^2*Q^2 ] [ wm ] Ps where wm = frequency offset w0 = oscillation frequency wc = flicker cutoff frequency Q = loaded Q F = noise figure (large signal) k = Boltzman constant T0 = noise temperature Ps = output power ref. A Simple Model of Feedback Oscillator Noise Spectrum D. Leeson, IEEE Letters Feb 1996 -------------------------------------------------------------------------------- INDUCTANCE OF A STRAIGHT WIRE L = 0.2*l*(ln(l/d)+0.5) where d = wire dia (mm) l = length (mm)